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The momen tum t r a n s f e r  between a fluidized bed and an i m m e r s e d  ver t i ca l  su r face  is con-  
s idered and the fo rce  acting on the su r face  in conditions of intensive pa r t i c l e  d i sp lacement  
a r e  es t imated .  

The in terac t ion  of a fluidized bed with i m m e r s e d  bodies is a subject  of cons iderable  in te res t  for  the hydro-  
dynamic modeling of the bed and a l so  in connection with the analys is  of local  pe r tu rba t ions  of i ts  s t ruc tu re  
c lose  to var ious  inse r ted  p ieces  and manufac tured  components ,  s ignificantly influencing the external  heat  and 
m a s s  t r a n s f e r .  Calculat ion of the in te rac t ive  fo rces  is a l so  impor tant  when the fluidized bed is used as  a 
heavy med ium for  gravi ta t ional  sepa ra t ion  and the enr ichment  of f r ee - f low m a t e r i a l s ,  in the const ruct ion of 
equipment with fluidized beds of var ious  types  and specif icat ions ,  etc.  

The introduction of a fore ign  body in a fluidized bed leads to cons iderab le  disrupt ion of the bed s t ruc tu re :  
On the r e a r  (with r e s p e c t  to the fluidizing flow) p a r t  of the body sur face  the re  appea r s  a region filled by a 
slowly slipping dense l a y e r  ("cap") of pa r t i c l e s  [1, 2] and c lose  to the f ront  pa r t  of the sur face  a ~free"  l aye r  
filled by fluidizing med ium and containing re la t ive ly  slight amounts  of pa r t i c l e s  [1, 3]. The p r e s e n c e  of this 
f r ee  l aye r  fac i l i ta tes  the genera t ion  of bubbles,  which pass  per iodica l ly  along the side sur face  of the body and 
a r e  comple te ly  or  par t ia l ly  dislodged f r o m  it  by the densely packed cap.  This s t ruc tu ra l  change affects  the 
flow around the body, in p a r t i c u l a r  changing the m e a n  contact  t ime of var ious  pa r t s  of its su r face  with the 
dense phase  and the bubble phase  and the effect ive force  exper ienced by the su r face .  

Because there  a r e  so many  fac to r s  that may  s imul taneously  influence the bed in teract ions  with i m m e r s e d  
bodies the re  has been  a tendency, in the re la t ive ly  few investigations of the in terac t ive  fo rces  (for example,  
[2, 4-7]) to isola te  the components  of the total  fo rce  due to the flow of the fluidizing medium,  the d isp lacement  
of the d i spe r s e  phase  under  the action of the bubbles,  the d i rec t  impact  of pa r t i c l e s  on the body sur face ,  etc.  
This ana lys i s ,  however  convenient  it m a y  be fo r  the co r r e l a t i on  of exper imenta l  data, is ve ry  a r b i t r a r y  and 
does not re f lec t  the r ea l  (and whole) p i c tu re  of the flow of d i spe r se  medium around the body, which depends 
very  la rge ly  on the s ize ,  shape,  or ientat ion,  and mot ion  of the body and a lso  on the c h a r a c t e r i s t i c s  of the f lu- 
idized bed r e m o t e  f r o m  the body. 

In cons t ruc t ing  a model  of the momen tum t r ans fe r ,  it is expedient to d i s r ega rd  the fea tures  of the p r o -  
ce s s  that a r e  specif ic  to p a r t i c u l a r  bodies and instead to concent ra te  at tention on the ma in  mechan i sm common 
to different  bodies,  taking the example  of the s imp le s t  poss ib le  body geome t ry .  The d iscuss ion  below r e s t r i c t s  
i tself  to the momen t um  t r a n s f e r  with an inf ini tes imal ly  thin plate,  at r e s t  o r  moving ver t ica l ly  in the bed. In 
this  case ,  the p r e s e n c e  of specia l  regions of a l t e red  s t ruc tu re  may  genera l ly  be neglected.  

In a bed fluidized by a gas,  and a lso  in a fluid bed with developed pulsat ional  motion of the pa r t i c l e s ,  the 
sec t ion  of the su r face  that  is in contact  with the dense phase  of the bed at a p a r t i c u l a r  t ime  evidently plays  the 
ma in  role  in the m o m e n t u m  t r a n s f e r ,  and the momen tum t r a n s f e r  f rom the sect ions adjacent  to the bubbles 
moving along the su r face  may  be neglected in the f i r s t  approximat ion .  This is because  the "viscos i ty"  due to 
the dense phase  of the bed is found to be s eve ra l  o rde r s  of magnitude higher  than the v iscos i ty  of the fluidizing 
agent (see [8], for  example)  and is analogous to the model  in [9], used to desc r ibe  the external  heat  t r a n s f e r .  
The p r o b l e m  then reduces  to the m o m e n t u m - t r a n s f e r  m e c h a n i s m  f rom a su r face  to an adjacent  concentrated,  
mac roscop ica l ly  homogeneous med ium.  The s ta t i s t ica l  f rac t ions  of the sur face  a r e a  in d i rec t  contact with 
this med ium is regarded  as  an a p r i o r i  known quantity.  

In the analys is  of p rob l ems  of this type,  the dense phase  is usually modeled by a Newtonian continuous 
medium,  the v i scos i ty  of which is es t imated  by a method analogous to those  used in the v i s c o s i m e t r y  of homo- 

Inst i tute of Mechanics  P r o b l e m s ,  Academy of Sciences of the USSR, Moscow. Trans la ted  f rom Inzhenerno-  
Fiz icheski i  Zhurnal ,  Vol. 34, No. 1, pp. 40-49, January ,  1978. Original a r t i c l e  submit ted December  20, 1976. 

24 0022-0841/78/3401-0024 $07.50 �9 1978 Plenum Publishing Corpora t ion  



geneous fluids [8]. For  example ,  the v i scos i ty  may  be es t imated  on the bas i s  of exper imen t s  with a rota t ing 
paddle v i s c o s i m e t e r  [10, 11], a descend ing- sphe re  v i s c o s i m e t e r  [12], a Couette v i s c o s i m e t e r  [13-15], and a 
tors iona l  pendulum [16], and a lso  f r o m  an analogy between the behavior  of a fluidized bed and a homogeneous 
viscous  liquid. The v i scos i ty  has been  de te rmined  f r o m  exper imen t s  on the flow of the bed f rom a nozzle 
[17], on i ts  mot ion in a chute [18], and on bubble mot ion  in the bed [19, 20]. T h e r e  is a lso  a f requency method 
of v i scos i ty  m e a s u r e m e n t  [21]. An example  of the use of a continuum model  fo r  the calcula t ion of the fo rces  
acting on an i m m e r s e d  body may  be found in [22]. 

Such model ing is app rop r i a t e  for  the desc r ip t ion  of the momen tum- f low density in the body of a homo-  
geneous fluidized bed fo r  the dense phase  of an inhomogeneous bed c lose  to i ts  boundary.  In conditions of 
developed fluidization the bed may  in fact  be descr ibed  as a se t  of two in teract ing continua model ing the con- 
tinuous and d i spe r s e  phases ;  the v i scos i t i e s  of the two continua a r e  r ep re sen ted  by t en so r s  and they have the i r  
or ig in  in momen t um  t r a n s f e r  by pulsat ing pa r t i c l e s  and fluid molecu les  [23]. For  dense r  sy s t ems ,  in which 
d i rec t  contact  between moving pa r t i c l e s  is significant ,  the introduction of a single s c a l a r  coefficient  of v iscosi ty  
t ensor  is insufficient:  T h e r e  a lso  a p p e a r  additional non-Newtonian effects  leading, in pa r t i cu la r ,  to the gen-  
e ra t ion  of normal  nthrust"  s t r e s s e s  in the flow [24].* 

However,  such cons idera t ions  cannot be  used c lose  to the solid boundary of the fluidized bed, obstruct ing 
the flow of the fluidizing agent  and changing the s t ruc tu re  and p r o p e r t i e s  of the d i spe r s e  s y s t e m  in the l aye r  
at  the wall  (the th ickness  of which should be of the o rde r  of a few par t i c l e  d iamete r s )  in compar i son  with the 
s t ruc tu re  and p r o p e r t i e s  f a r  f rom the boundary.  It is c l e a r  that, in genera l ,  the hydrodynamic equations and 
rheological  re la t ions  r emote  f r o m  the i m m e r s e d  body do not hold inside this layer ,  which may play a very  
l a rge  ro le  in the m a s s  t r a n s f e r  to interchanging e lements  of the d i spe r s e  phase  at  the body sur face .  In fact, 
this  p r o c e s s  is essent ia l ly  unsteady:  The exchange of these e lements  or  of individual pa r t i c l e s  in the com-  
posi t ion  of a s ingle e lement  occurs  ve ry  rapidly  in conditions of developed fluidization, so that in the c h a r -  
ac t e r i s t i c  t ime  of this exchange the pe r tu rba t ion  f r o m  the body is p rac t i ca l ly  unable to pa s s  beyond the l imi ts  
of the boundary l aye r .  The re fo re ,  it is imposs ib le  to r ega rd  as  adequate an approach,  for  example ,  in which 
the nonsteady m o m e n t u m  t r a n s f e r  to an e l emen t  of the dense phase  (a npacket" of pa r t i c l e s )  making contact  
with the su r face  is cons idered  in a continuum model ,  when this e lement  is descr ibed  as  a homogeneous con-  
tinuous med ium.  Correspondingly ,  the v i scos i ty  values  obtained in var ious  exper imen t s  based on re la t ions  
for  homogeneous Newtonian fluids should be different ,  as  is in fact  observed  (see [8, 10-21] and also the c o m -  
pa r i son  in [25]). Here  once again the re  is a c l e a r  analogy with the si tuat ion d iscussed  in [9]. 

As in [9], it is now a s s um ed  that the pa r t i c l e s  a r e  involved in developed pulsat ional  (pseudoturbulent) 
motion; i .e . ,  the re  is ideal mixing of the pa r t i c l e s  and, in pa r t i cu la r ,  the mean  t ime  ~" spent by any pa r t i c l e  
in the d i rec t  vicinity of the pla te  is smal l .  Theore t i ca l  e s t ima te s  based on the resu l t s  of [23], and a lso  some 
exper imenta l  data indicate that  the c h a r a c t e r i s t i c  f requency f=~.-1 of s m a l l - s c a l e  per tu rba t ions  of individual 
pa r t i c l e s  is ve ry  l a rge  and cons iderably  exceeds  the f requency of bubble genera t ion  at  the plate .  There fo re ,  
nonsteady effects  assoc ia ted  with the exchange of dense -phase  volumes may  be comple te ly  d i s regarded .  The 
di f ference  in the c h a r a c t e r i s t i c  t imes  of the s m a l l - s c a l e  pulsat ions and the observed  m a c r o s c o p i c  mot ion of 
bubbles and l a rge  groups  of pa r t i c l e s  was d iscussed  sufficiently thoroughly in [26]. 

The impermeab i l i t y  of the pla te  for  the p a r t i c l e s  is due, as is known, to the exis tence  of a boundary 
l aye r  of inc reased  po ros i ty  and hence the poss ib le  escape  of excess  volume of fluidizing agent  along thep la te .  
This escape  (observed in [27, 28], for  example)  may ,  in pr inciple ,  have a cons iderab le  effect  on the conditions 
of momen tum t r a n s f e r  and so compl ica tes  the ana lys i s .  However,  following [9], this effect  will,  for  s impl ic i ty ,  
be neglected in the p r e s en t  ana lys i s .  Then, if the pa r t i c l e s  did not pulsate  and the re  were  no f r ic t ion  of the 
fluidizing agent  and the pa r t i c l e s  with the plate,  the plate  would in genera l  have no effect  on the bed. In rea l i ty ,  
the medium is entrained by the plate  and its mean  velocity within some  thin sur face  l a y e r  d iverges  f r o m  the 
fluidization veloci ty.  The "exces s "  m o m e n t u m  of the med ium is t r a n s f e r r e d  by pa r t i c l e s  within this layer ;  

*While cons ider ing  a t t empts  to de t e rmine  the v i scos i ty  of a fluidized bed and of other  types of d i spe r se  s y s -  
t em,  it is appropr i a t e  to note a ve ry  com m on  e r r o r ,  it is a s sumed  that when the re  is no contact  between 
gra ins  or  when there  is a fluid " lubr icant"  separa t ing  adjacent  gra ins ,  the internal  f r ic t ion of the d i spe r se  
phase  is identically ze ro  or  ve ry  smal l .  In fact ,  of course ,  this is not t rue .  The internal  f r ic t ion c h a r a c t e r -  
izes the density of the whole d i s p e r s e - p h a s e  momen tum flow through some imagined a r e a  within the bed, and 
this flow is due not only (or mainly,  as a rule) to the m o m e n t u m  t r a n s f e r  in d i rec t  contacts  between pa r t i c l e s  
but to momen tum  t r a n s f e r  by the pulsat ional  mot ion of pa r t i c l e s ,  as is the case  in gases  whose molecu les  p e r -  
fo rm the rma l  motion,  in turbulent  media  with pulsat ing liquid molecu les ,  and in o ther  c l a s s i ca l  s y s t e m s .  
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if the pulsat ional  mot ion of the pa r t i c l e s  is sufficiently intense,  pa r t i c l e  t r a n s f e r  between this l a y e r  (the th ick-  
ness  of which may  be es t imated  on the  bas i s  of the analys is  below) and the body of the bed may  be regarded  
as  ins tantaneous.  Thus,  according  to the model  developed here ,  the momen tum t r a n s f e r  f rom the pla te  and 
the entrained volumes of fluidizing agent  is main ly  de te rmined  by the acce l e ra t ion  of the f luidizing-agent  p a r -  
t ic les  a r r i v i n g  at the su r face  l aye r  f r o m  the body of the bed, which const i tute an effect ive momen tum sink. 
Momentum t r a n s f e r  as  a r e su l t  of d i rec t  col l is ion between the pa r t i c l e s  and the pla te  su r face  is neglected 
he re ,  on the a s sumpt ion  that the change in pa r t i c l e  velocity is due ent i re ly  to in teract ions  with the fluidizing 
medium.  The above cons idera t ions  a r e  analogous to those used in [9], and the definite s u c c e s s e s  achieved in 
[9] in descr ib ing  heat  t r a n s f e r  may  be regarded  as  indirect  conf i rmat ion  of t he i r  t ru th .  

Note that rapid pa r t i c l e  exchange in the su r face  l a y e r  and the accompanying momen tum t r a n s f e r  to the 
body of the bed p reven t  the fo rmat ion  of the usual two-phase  boundary l aye r  at  a p la te ,  faci l i tat ing its constant  
disrupt ion.  

The unper turbed s ta te  r em o t e  f r o m  the pIate  (y- -~)  is descr ibed  by the equations 

d p .  d o g - - F ( p ,  v . ) = 0 ,  - - p ( d , - - d o ) g + F ( p ,  v . ) = 0 ,  (1) 
dx  

for  which pr and voo m a y  be de te rmined  as  a function of O and a p a r a m e t e r .  In a homogeneous medium p c h a r -  
a c t e r i z e s  the t rue  mean  bulk concent ra t ion  of d i spe r s e  phase  in the bed. while in an inhomogeneous medium it 
c h a r a c t e r i z e s  only the dense phase .  

Close  to the pla te  the veloci ty of the fluidizing medium is wr i t ten  in the fo rm v +v~. Then on the bas i s  of 
the assumpt ions  and the model outlines above,  the following re la t ions  may  be wri t ten  for  v: 

day - - - - P = 0 ,  v = V - - v |  v - ~ O ( g - ~ c o ) ,  ~=~t0G(p ), (2) 
dy  2 

where  the m o m e n t u m - s i n k  density may be wri t ten,  as in [9], in the fo rm 
4 

P = f n m W  (~), f =  1 , n = p :~a , m = - -  ~a3d,. (3) 
3 

The function G (P) c h a r a c t e r i z e s  the d i f ference  between the effective v iscos i ty  of a fluid f i l te r ing  in a 
mobi le  porous  body formed by pa r t i c l e s  and the physical  v iscos i ty  of the fluid [29, 30]. In the genera l  case ,  
by a s imple  redefini t ion,  G (p) may  a l so  take into account the momen tum t r a n s f e r  in the fluidizing medium due 
to random pulsat ional  motion,  cons idered  in [23]. In Eqs. (2) and (3) it is a s sumed  that the pa r t i c l e s  a r r i v e  at  
an a r b i t r a r y  point of the su r face  l aye r  with the s a m e  probabi l i ty  and have ze ro  velocity;  a f t e r  a t ime v they 
a r e  t r a n s f e r r e d  instantaneously to the body of the bed, acquir ing a velocity Wff), which depends on the posi t ion 
of the point ,  of cour se .  In pr inc ip le ,  Eq. (3) is eas i ly  genera l ized  to the s i tuat ion in which the t ime  T is a r an -  
dom quantity with a homogeneous dis t r ibut ion function. 

The var iab le  W(t) is de te rmined  using the equation of mot ion of a par t ic le ,  taking into account the r e -  
s t r ic t ion  of the flow around it. For  unit m a s s  of d i spe r s e  phase ,  this equation may  be wr i t ten  in the fo rm 

d W  
- -  ~ [(v| + v - -  W) 2 s ign (v| + v - -  W) - -  v~] + 13 (v - -  IV) (4) 

dt  

(the effect ive pa r t i c l e  weight is expressed  here  in t e r m s  of the hydraulic fo rce  cor responding  to the velocity 
v~).  The coeff icients  a and ~ will be r ep resen ted  in a fo rm der ived f rom the s e m i e m p i r i c a l  fo rmula  of [31]: 

3.5 d o 75 p ~t 0 (5) 
cr , 1~----- , e = l - - p  

4ca d, 2 e ~ aZdt 

approximate ly  c o r r e c t  when p >~ 0.03. The fo rce  F in Eq. (1) then t akes  the f o r m  

F (p, v) = n m  (r 2 + [~v) ---- pd i (av 2 + [~v). (6) 

Solving Eq. (4) with the initial condition W(0) = 0, it is easy  to find W(t) and P f r o m  Eq. (3) and then, so lv-  
ing Eq. (2), to de t e rmine  the velocity of the fluidizing agent at the pla te  and calcula te  the tangential  s t r e s s  ac t -  
ing on it. The d i s p e r s e - p h a s e  velocity may be calculated as follows: 

IV (t) dt. 
1 ~ )  

w (y) = "~ 
, . 2  
0 

The dependence on y in this fo rmula  is through v(y), which a p p e a r s  in the express ion  for  W(t). The o rde r  of 
magnitude of v is es t imated  as follows: [9, 23] 
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8 C8 
~ u' v~ ' C=C(p) ,  {8) 

where 6 is the thickness (determined below) of the surface l ayer  in which v(y) and wiy) are  significantly non- 
zero,  and the coefficient C (p) was investigated for small  par t ic les  in [23]. For  large par t ic les ,  C must  in gen-  
eral  be regarded as an empir ica l  pa r ame te r .  

As the necessa ry  computations a re  very  complicated, considerat ion is res t r ic ted  below to the special  
cases  corresponding to small  and large par t i c les .  

Small Par t i c les .  The hydraulic drag of a bed of sufficiently small  par t ic les  is a l inear  function of the 
velocity, i.e., in Eq. (4) the t e r m  proport ional  to a may be neglected. Then Eqs. (1)-(4) give success ively  

W (t) = o (1 - -  e-89, 

v (y) = (V - -  v . )  e-~y, 

and for  the tangential s t r e s s  at the wall 

P -(pdi/'r ) (1 - -  e=~X) v; {9) 

X2 = pd~ (1--e-~*), (10) 
�9 ~0 G 

7" = r~dv/@l~=o = - -  ~o~Z (V--  v~). (11) 

Using E q .  (5) and the e x p r e s s i o n  

(d, - -  do) g 
v~ - -  d ~  (12) 

derived f rom Eq. (1), and setting 8 ~;k -1, an equation for  r is obtained 

z ,  [ z ( l_e_z)] l /2~(752 )a/~- pCG '/2 tx~ 
"~ ~ e 3 aZdi (dt " do) g (13) 

The unique solution of this equation finally determines  the field v(y) and the tangential s t r e s s  T. These ex- 
p ress ions  may readily be wri t ten in simple analytic form in the limiting cases  of small  and large z. For  z<<l, 
1 - e -z  ~z  and, in general ,  X and T in Eqs. (10) and (11) are  independent of r :  

fo rm 

[ 751' /2 P T ~ - -  - -  Pgo (V--o~). (14) 
~ k 2G ! ea ' ~a 

For  z >>1, e -z  ~0 and f rom Eqs. (10)-(13) 

~ . ~  28z aadi(di--d~ T . ~ - -  2e--~z a2d'(d~--d~ (15) 
75CG Ix2o ' 75C /x o 

The total force  acting on the plate, the a rea  of both sides "of which is S, may evidently be wri t ten in the 

cD = s S T  - - -  k S  ( 1 " - -  v~), (16) 

where,  f rom Eqs. (14) and (15), the drag coefficient k for  small  and large z may be wri t ten as follows: 

k ~  - -  ( 7 5 G 1 ' / 2  sPlX~ 1), k~--2eZs aZd~(d'--d~ 
(z >> 1). (17) \ 2 ]  ea 75C ~t o 

It is evident f rom Eq. (16) that the force r is a l inear  function both of the plate a rea  and of its velocity, how- 
ever  large  this velocity may be. This important  resul t  was f i r s t  obtained experimentally in [32]. 

It is s imple to show, est imating the right-hand side of Eq. (13), that the pa r ame te r  z may in fact be 
small  for beds fluidized by gas and large in compar i son  with unity for  beds fluidized by liquid drops.  

The dependence of k on physical  pa r ame te r s  is found to be very complex and unusual. For  z<< 1 (typical 
of fluidization by a gas) the drag coefficient r i ses  l inearly with increase  in gas viscosity,  is inversely p ropor -  
tional to the par t ic le  size, and is independent of the phase density. For  z>> 1, on the other  hand, it decreases  
in inverse  propor t ion  to r i se  in velocity, is proport ional  to the square of the par t ic le  size,  and depends on the 
density of the par t ic les  and the fluidizing agent. For  z ~1, dependences of intermediate types would be ex- 
pected, valid in a limited pa rame te r  range~ for  example, there is a region in which k is pract ical ly  independent 
of viscosi ty.  
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The dependence of k on the poros i ty  is a l so  found to be complex.  Using the es t ima te  of C in [23], it is 
found that,  in the poros i ty  range of ma in  in te res t ,  k d e c r e a s e s  with i nc rea se  in poros i ty  when z<< i and in- 
c r e a s e s  when z >> 1. 

L a r g e  P a r t i c l e s .  In this ca se  the t e r m  with the f ac to r  fi may be neglected in Eq. (4). F o r  upward motion 
of the pla te  with veloci ty V > 0, i t  is a lways the case  that  v~ + v - W > 0. Calculat ions lead to the following 
solution of Eq. (4) with ze ro  initial  condit ions:  

IV(t)= 2(ea t - -1 )v |  + ( e~ t - -1 )v  v, tr = 2av=. (18) 
2e~v~ + (eot - -  1)v 

Random pulsa t ions  of l a rge  pa r t i c l e s  a r e  usually ve ry  intensive,  i .e. ,  r m a y  be a s sumed  smal l .  For  
s impl ic i ty ,  only the impor tan t  l imit ing case  when o'r << 1 will be cons idered  here .  Then the re la t ion  in Eq. (2) 
t akes  the f o r m  

"d2v pddr 2v| q- v (19) 
v = 0  

dy z 2~toG v~ 

and has the f i r s t  in tegra l  

_ _  pd6r pddr (20) dv = _ v ( p _ } _ q v ) l / 2  ' P =  , q = - -  
dy V~oG 31xoGv . 

(to de t e rmine  the a r b i t r a r y  constants  it  is  a s s u m e d  that  v and dv/dy vanish  s imul taneous ly  as  y -* ~).  The veloci ty  
field v(y) is de te rmined  f r o m  a re la t ion  obtained by integrat ing Eq. (20) with the boundary Condition for  y =0 
f r o m  Eq. (2) 

( p - k - q v ) l / ~ - - p l l  2 [p -+-q(V- -v . . ) ] l /2 - -p=/2  
(p q_ qv)l/~ q_ pl/2 = [p q_ q (V--v,~)] l/~ ~ pll~ exp (--pZm y). (21) 

The tangential  s t r e s s  may  be exp re s sed  using Eq. (20), a l so  takinginto  account the boundary condition in 
Eq. (2). Simple ca lcula t ion using the fo rmula  g i v e n  e a r l i e r  for  the fo rce  4~ acting on the pla te  leads to Eq. (16) 

with d rag  coeff icient  

k=(3 .5 ) , / 4 s (pG) l l~  [ do (d ' - -d~  ( V - - v |  1/2 
ea j 1 -b 3v-----~- " (22) 

In this case, evidently, the drag coefficient depends (though not very strongly) on the ratio between the phase 
velocity and the velocity of the fluidizing agent in the imperturbed dense phase. The dependence of k on the 
porosity and the physical parameters following from Eq. (22) is also very weak. Equation (22) is universal in 
the sense that it does not include any parameters characterizing the pulsational motion of the particles. 

In the case of downward motion of the plate (V< 0), there is always a region 0<y<y,  at its surface in 
which v +v< 0. Within this region v~+v - W< 0 at times sat[sfying the condition 0<t<t ,  (y). For these times, 

when fl = 0, Eq. (4) gives the relation 

arctg v~ q- v - -  IV I crt + arctg v| -~ v (23) : _ -  .... , t .<  t ,  (y). 
V~ 2 V~ 

The value of t .  (5') is found f r o m  the condition W(t , )=v ,o+v,  i .e . ,  Eq. (23) gives  

t, (y) = - -  ~ arctg v| -b v (y) (24) 
ff O~ 

When t > t ,  (y), v.o + v -  W > 0 and solving Eq. (4) with the initial condition W(t,)--v,o +v leads to the resu l t  
2 

IV (t) = v +  - -  v| t > t ,  (y). (25) 
e at + 1 

Let V be smal l  in absooute magnitude,  so that  �9 > t* (0)=max t , ;  as  before ,  o-r <<1. This  leads to the 

r e su l t  

I iV[ ~ t ~T ~ (26) 
o--S g - 2  ~ <~l, 

and when this condition is sat isf ied,  Eq. 09) is replaced,  in the region O<y < y . ,  by the re la t ion  
, d2v 

e~ 
and l ikewise  Eq. (20) is replaced by the re la t ion  

dv _~ [ 2pdt 

pd, (v. ,q- v) = 0 (27) 
X~o 6 

v (v. + --~-v) + D ] '/2, 
(28) 
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where  D is an a r b i t r a r y  constant .  As before ,  Eq. (20) holds in the region y > y , .  If dv/dy is required to be 
continuous a t y  = y .  and the definit ion voo +v (y , )  = 0 is introduced, calculat ions taking into account  Eq. (26) give 

pd,v~ ( +  2 ) pdlv~ (29) 
D -  ~oG + - 3 -  a ~ .~toG 

Using this exp res s ion  in Eq. (28) and taking dv/dy at  y =0, where  v(0)=V -voo ,  leads  again  to a fo rmula  fo r  O: 

ffJ -- - -  kSV, k = s . (30) 

It is evident that when aT << 1 the d rag  is cons iderably  l a r g e r  for  downward mot ion of the pla te  than for  
upward motion.  F o r  V = 0 Eq. (30) g ives ,  fo rmal ly ,  O= 0, which cont radic ts  the conclusion obtained f r o m  Eqs.  
(16) and (22). This  cont radic t ion  is only apparent :  It is due to the use  of the approx imate  equality in Eq. (29). 
The t rue  value of the fo rce  acting on a pla te  at r e s t  is obtained f r o m  Eqs.  (16) and (22) at  V = 0  and is nonzero.  

Note that,  in con t r a s t  to the d rag  coeff icient  for  upward mot ion in Eq. (22), the drag coeff icient  in Eq. 
(30) descr ib ing  downward mot ion depends signif icantly on the t i m e  ~-, and hence on the c h a r a c t e r i s t i c s  of the 
pulsat ional  mot ion.  Express ing  T in acco rdance  with Eq. (8) it is s imple  to wr i te  k as a function of the phys ica l  
p a r a m e t e r s .  

When the f i r s t  inequality in Eq. (26) is violated,  t he re  is a subregion  0 < y < y ~  of the region 0 < y < y . ,  in 
which Eq. (23) mus t  be used instead of Eq. (25) to ca lcula te  W(~); y~ is de te rmined  f rom the obvious condition 
t .  (y~) =T. It is a l so  s imple  to genera l i ze  the resu l t s  to the s i tuat ion whenaT ~> 1, but the computat ions become 
m o r e  compl ica ted .  

Note that  in an inhomogeneous bed s m a y  be de te rmined  f r o m  an approx imate  re la t ion  der iving f r o m  two- 
phase  f luidization theory ,  as p roposed  in [9]. C o m p a r i s o n  of the resu l t s  of [9] with those of the above theory  
indicates  that t he re  is a definite analogy between the p r o c e s s e s  of momen tum and heat t r a n s f e r  for  the i m -  
m e r s e d  body. 

If the fo rmat ion  of s ingular  regions  at  the su r face  of the body i m m e r s e d  in the fluidized bed is neglected,  
a s i m i l a r  method may  be used to ca lcula te  the fo rces  acting not only on a ver t ica l  p la te  but a l so  on a body of 
di f ferent  shape.  The values of s, p, and v~o m u s t  then be a s sumed  to depend on the posi t ion of the e lement  of 
body su r face  cons idered .  For  example ,  in the s imp le s t  model  of an incompress ib l e  homogeneous bed (p =const ,  
s = 1) the value of v~o may  be obtained by solving the "ex te rna l"  p rob l ems  of the potent ial  flow around the body 
of a continuous med ium modeling the d i s p e r s e  phase  and of the f i l t ra t ion of the fluidizing agent  in the mobi le  
porous  body formed by this phase ,  as  the l imit  of the tangential  f lutdizing-agent  veloci ty on approaching the 
body su r f ace .  This  value is then used as the external  l imi t  for  an in ternal  solution v{y) of the type cons idered  
above,  valid in the thin su r face  l ayer ;  the re la t ion  with the basic  ideas of the method of a s y m p t o t i c - s e r i e s  ex-  
pans ions  is he re  comple te ly  evident.  

Di rec t  c o m p a r i s o n  of the r e su l t s  obtained with exper imen ta l  data (taken, in pa r t i cu la r ,  f rom the works  
ci ted above) is difficult for  two r ea s ons .  F i r s t ly ,  these  data usually r e f e r  to the "v iscos i ty"  of the fluidized 
bed de te rmined  f rom an inadequate analogy with the v i s c o s i m e t r y  of homogeneous Newtonian media .  As follows 
f r o m  the ana lys i s  given above,  the m o m e n t u m - t r a n s f e r  m e c h a n i s m  in a fluidized bed is fundamental ly different  
f r o m  that operat ing in a homogeneous fluid (for example ,  no boundary l a y e r  of the usual  type is fo rmed  at  a 
p la te  in a fluidized bed), and the introduction of such a "v iscos i ty"  as a un iversa l  c h a r a c t e r i s t i c  of the bed is 
phys ica l ly  mean ing le s s .  Secondly, as  follows f r o m  the theory ,  the dependence of the drag  fo rces  on the f lu-  
id iz ing-agent  v iscos i ty ,  pa r t i c l e  s ize,  etc. ,  in var ious  ranges  of p a r a m e t e r s ,  may  differ  grea t ly ;  this explains,  
to some  extent, the cont radic t ions  and d i s ag reemen t s  in the exper imenta l  r e su l t s  obtained by different  ex-  
p e r i m e n t e r s .  Ver i f ica t ion  of the r e su l t s  evidently r equ i res  the formula t ion  of specia l  and m o r e  accura t e  ex-  
p e r i m e n t s .  

In conclusion, the two main  l imi ta t ions  of the above theory  should be emphas ized .  F i r s t ly ,  d i rec t  m o -  
men tum t r a n s f e r  between the body su r face  and adjacent  pa r t i c l e s  and momentum t r a n s f e r  between contacting 
pa r t i c l e s  have been neglected.  Of course ,  these  assumpt ions  cannot be c o r r e c t  for  f luidization numbers  c lose  
to unity, when t he r e  is a m o m e n t u m - t r a n s f e r  m e c h a n i s m  of the type d iscussed  in [24]. However,  in conditions 
of developed fluidization, these  assumpt ions  a r e  approx imate ly  co r r ec t ,  as is evident, for  example ,  in that the 
"v iscos i ty"  de te rmined  fo r  beds of smooth and rough or  angula r  pa r t i c l e s  is found to be a lmos t  the s ame  [8]. 
Secondly, the poss ib le  e scape  of fluidizing agent  through a l a y e r  of inc reased  poros i ty  at the pla te  su r face  [27] 
has been  neglected.  Sems al lowance fo r  this effect  is poss ib le  if modified (for example ,  on the bas i s  
of exper iment)  re la t ions  for  the po ros i ty  and f luidizing-agent  velocity in the d i rec t  vicinity of the su r face  a r e  used. 
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N O T A T I O N  

a, particle radius; C, function appearing in Eq. (8); D, arbitrary ccnstant in Eq. (28); d 0, d 1, fluidizing- 
agent and part icle-material  density; F, interactive force between continuous and disperse phases; f, pulsation 
frequency; G, function appearing in Eq. (2); g, acceleration due to gravity; k, plate drag coefficient; m, plate 
mass; n, number of particles per unit volume; P, specific power of momentum sinks in surface region; p, q, 
coefficients appearing in Eq. (20);p~o, unperturbed pressure; S, plate area; s, statistical fraction of contact time 
with dense phase; T, tangential stress;  t, time; t . ,  critical particle-takeoff time; V, plate velocity; v, discrep- 
ancy of fluidizing-agent velocity in the interstices between particles from its unperturbed value v~o; W, particle 
velocity; w, mean disperse-phase velocity;x, y, longitudinal and transverse coordinates; y . ,  y~, critical values 
of y; ~, t ,  coefficients appearing in Eq. (5); 5, surface-layer thickness; ~, porosity; )t, exponential factor in 
Eq. (10); #=#0G; #0, fluidizing-agent viscosity; p, bulk concentration of particles in dense phase; a, exponential 
factor in Eq. (18); ~, residence time of particle in surface layer; r force acting on plate. 
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